Virasoro 3-algebra from scalar densities
نویسنده
چکیده
It is shown that the ternary Virasoro-Witt algebra of Curtright, Fairlie and Zachos can be constructed by applying the Nambu commutator to the vect(1) realization on scalar densities. This construction is generalized to vect(d), but the corresponding 3-algebra fails to close. There has recently been a surge of interest in 3-algebras in M-theory [1, 2, 3, 4], which is closely related to the ternary brackets introduced long ago by Nambu [5] and developed by Filippov [6], Curtright and Zachos [7] and many others. In particular, Lin [8] considered a Kac-Moody 3-algebra and Curtright, Fairlie and Zachos [9] considered very recently a 3-algebra related to the Witt (centerless Virasoro) algebra. In this note I observe that their Virasoro-Witt 3-algebra (eqn (22) in [9]) can be constructed by applying the Nambu commutator [A,B,C] = ABC +BCA+ CAB −BAC − CBA−ACB (1) = A[B,C] +B[C,A] + C[A,B] to the Virasoro representation acting on scalar densities, i.e. primary fields. Consider the operators Em = e , Lm = e (−i d dx + λm), (2) Sm = e (−i d dx + λm).
منابع مشابه
Lie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملar X iv : h ep - t h / 06 01 11 3 v 1 1 7 Ja n 20 06 General Coordinate Transformations as the Origins of Dark Energy
In this note we demonstrate that the algebra associated with coordinate transformations might contain the origins of a scalar field that can behave as an inflaton and/or a source for dark energy. We will call this particular scalar field the diffeomorphism scalar field. In one dimension, the algebra of coordinate transformations is the Virasoro algebra while the algebra of gauge transformations...
متن کامل94 09 06 7 v 1 1 2 Se p 19 94 Extensions of Virasoro group and Virasoro algebra by modules of tensor densities on S 1 Valentin OVSIENKO
We classify non-trivial (non-central) extensions of the group Diff(S1) of all diffeomorphisms of the circle preserving its orientation and of the Lie algebra Vect(S1) of vector fields on S1, by the modules of tensor densities on S1. The result is: 4 non-trivial extensions of Diff(S1) and 7 non-trivial extensions of Vect(S1). Analogous results hold for the Virasoro group and the Virasoro algebra...
متن کاملar X iv : h ep - t h / 05 05 14 6 v 1 1 6 M ay 2 00 5 Virasoro generators and the dS 3 / CFT 2 correspondence ∗
We discuss the quantization of a scalar field in three-dimensional asymptotic de Sitter space. We obtain explicit expressions for the Noether currents generating the isometry group in terms of the modes of the scalar field and the Liouville gravitational field. We extend the SL(2, C) algebra of the Noether charges to a full Virasoro algebra by introducing non-local conserved charges. The Viraso...
متن کاملEntropy of the 3-brane and the AdS/CFT duality from a two-dimensional perspective
A two-dimensional (2D) scalar-tensor gravity theory is used to describe the near-horizon nearextremal behavior of black 3-branes solutions of type IIB string theory. The asymptotic symmetry group of the 2D, asymptotically anti de Sitter (AdS) metric, is generated by a Virasoro algebra. The (non-constant) configuration of the 2D scalar field, which parametrizes the volume of the 3-brane, breaks ...
متن کامل